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Abstract—The best possible distribution of Young's modulus and/or the cross-sectional area is found for a
column which, for a given volume and length, carries the maximum possible axial loads which are
non-uniformly distributed along its length and concentrated at the end-points. The column is elastically
clamped at one end and free at the other, where the concentrated axiai load is applied. The design variabies
are subject to upper and fower bounds. Sufficient optimality conditions are derived for a given function to
be a solution of the optimization problem. The procedure to determine the optimal solutions is described.
Numerical resuits are obtained by employing an iterative computational technique.

1. INTRODUCTION

We consider the problem of maximizing the total axial load which is non-uniformly dis-
tributed along the length and concentrated at the end of a column of a given volume. This
maximization can be achieved by optimally designing the distribution of the non-homogeneity
and/or the cross-sectional area. We first solve the problem of optimizing a non-homogeneous
column with respect to its shape and then the problem of optimizing a column with respect to
its shape and Young's modulus with inequality constraints imposed on both the design
variables. In the first problem we have minimum and maximum thickness constraints, while in
addition to these, we have in the second problem upper and lower bounds on the Young's
modulus. The column is elastically clamped at one end and free at the other, where an axial
load is acting. We assume that the instability occurs at the fundamental mode of buckling.
Solutions are found for columns with a variety of cross-sectional geometries.

In mathematical terms, the optimal design problems under investigation are equivalent to the
problem of maximizing the lowest eigenvalue of a linear second-order ordinary differential
equation with variable coefficients known as isoperimetric problems in the calculus of
variations[1]). Certain coefficient functions (design variables) in the differential equation are to
be varied subject to some integral conditions. In the last section we formulate our results in the
form of an isoperimetric inequality which gives an upper bound on the lowest eigenvalue of the
differential equation.

The present investigation differs from previous studies on optimal columns basically in
considering a general form of loading, allowing for the longitudinal non-homogeneity of the
material, and finally optimizing the column with respect to both shape and non-homogeneity.

With the exception of [2, 3], where the weight of the column is taken into account, only
concentrated loads acting at the ends were examined in previous papers on the optimal design
of conservatively loaded columns{4-18]. Furthermore, the non-homogeneity of the columns has
been given attention only in [8, 9]. In [8], the numerical results are given only for homogeneous
cases and in [9] the optimal distribution of non-homogeneity and shape is computed by first
assuming the deflection curve in a special case. On the other hand, the optimal Young's
modulus of structural elements of constant cross-sectional area has been determined in a few
cases. Klosowicz and Lurie{19] determined the optimal non-homogeneity of a torsional bar and
Rammerstorfer[20] that of a vibrating beam. In [20] no lower bound is imposed on the Young’s
modulus, and consequently there are points where this becomes zero. The same situation has
been observed in the treatment of shape optimization problems without any thickness
constraints[2, 4,5,7-9, 11-14]. As this is clearly undesirable from a practical point of view,
either a minimum thickness or a maximum stress constraint has been imposed in some
formulations in order to avoid this situation(3, 6, 10, 15-18]. In our case, the design variables,
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the Young's modulus and/or the cross-sectional area, are subject to upper and lower
nds. Optimal columns with elastic clamping have been considered in [8, 12].

n Section 2 we derive the basic equations of the problem. Optimality conditions are
ined in Section 3 by a method suggested by Barnes[16, 17] and a qualitative analysis of the
nal forms is given.

‘o obtain the numerical results in Section 4, we employ an iterative computational scheme
ar to that used by Niordson[21]. In this section the relations between the critical buckling
and the volume, the length, the cross-sectional geometry and the non-homogeneity of the
nn are established by an isoperimetric inequality.

2. FORMULATION OF THE PROBLEM

e consider an untwisted column of length L, volume V and cross-sectional area A(X)
+ X is the coordinate along the unbuckled state of the column (Fig. 1). The column is
:ally clamped at X =0 and carries a non-uniformly distributed axial load 0 € A,Q(X) <=
it length along it. There may be an axial compressive load A.P at the free end (X = L).
11 A, the load factor. The column is made of an isotropic, linearly elastic material which
ongitudinal non-homogeneity described by Young’s modulus E(X). Denoting by I(X) the
1t of inertia of the cross section about an axis through the centroid of the column

dicular to the plane of bending, and by Y(X) the deflection function, the equation of
rium is

L
[EIY"]"+/\°[( L Q) dt +p) Y']' =0 @
to the boundary conditions
Y=0, Y'=BEIY" at X=0, 22)
EIY"=0, (EIYY+APY' =0 at X=L 2.3)

'prime denotes differentiation with respect to X, and B, characterizes the rotational
t of the support with B, = 0 for a rigidly clamped column, B = = for an ideal hinge. We
'sider the optimal design problem of maximizing the load factor A, by (i) determining
Lsectional area distribution A(X), for a priori specified functions E(X), Q(X) and P,
9 the volume and thickness constraints

L
jo AXYdX =V 2.9)
0<Anin<AX)<Am: for 0=sXs<L (2.5)
W.Amin, Amex are given constants; (ii) determining both A(X) and the distribution of

AP
XeL

AeQ(X)

Fig. 1. Fundamental mode of buckling.
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non-homogeneity E(X), for a prioni specified Q(X) and P, subject to (2.4), (2.5) and

L
fo EX)dX =S 26)
0<Eiwn<EX)<Eg, for 0sX=<L 2.7

where S, Enin, Emax are given constants, such that (2.1)<(2.3) will have a non-trivial solution
Y (X) with no internal nodes.

The condition on internal nodes is imposed to ensure that Y(X) is the lowest mode of
buckling. Clearly V and S should satisfy LAm,<V <LAng, and LE ;;<S<LEy, to
guarantee feasibility.

We introduce the following dimensionless quantities:

= % yx) = ——-Y%L)

L L
it =20, p=P/f0 a0 dx, a=Loun/ [ oo ax, 28

x , e(x)= !’S- E(xL), a(x)= % A(xL),

1
a(x) = f Go6) dé

We assume that there exists a relation between i(x) and a(x), expressible in the form
i(x) = k,a"(x) 2.9)

where k, is a dimensionless constant depending on n and the cross-sectional geometry, and
n =1, 2 or 3. For sandwich columns of rectangular cross section with fixed width and variable
face-sheet thickness, n = 1 and k, = H*/L?, where 2H = fixed core thickness. Solid columns
with geometrically similar cross-sections have n =2 and ;= kV/L?, where k depends on the
cross-sectional shape. For solid columns of rectangular cross section of fixed width and
variable depth, n = 3 and k; = V?/12B*L", where B = width. We refer to [10] for further details.
In the case of thin-walled circular columns of similar cross sections, n = 1, k, = D*/8L? if the
design variable is the wall thickness[3], and n = 3, k; = V?/8#>L** if the design variable is the
diameter; where D = cross-sectional diameter and t = wall thickness[22]. We define

_L [t _ BoSVEy
'scho axax, =Bt 2.10)

Substituting (2.8), (2.9) and (2.10) into (2.1), we have

[ea"yT"+ Al(g(x) + p)yT =0. 211

We expect the optimal a(x) and e(x) functions to be continuous but not continuously
differentiable in view of the inequality constraints (2.5) and (2.7). Therefore, by setting
M = ea"y", the differential eqn (2.11) is transformed into a form which does not involve the
derivatives of a(x) and e(x). Various advantages of a formulation in terms of the bending
moment M have already been noted by Masur([18)]. After some transformations and using the
boundary condition (ea®y")' + Apy’ =0 at x = 1, we obtain

M\, M
(q(x) +p) w10 @.12)

subject to

M@©)+AB(1+p)M(0)=0, M(1)=0. (2.13)
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Let 2% denote the class of functions f(-) that are piecewise continuously differentiable in
the sense that they are continuous everywhere on [0, 1) and continuously differentiable there,
with the possible exception of at most a finite number of points where the derivative of f(-)
shall have well-defined limiting values both from the left and the right.

Definition. s denotes the class of functions a € P¥ satisfying
1
f a(x)dx =1, 0Sdmn<a(x)<am; for x&[0,1]. (2.14)
0

a € o is called an admissible a-function.

Definition. ¢ denotes the class of functions e € $¥€ satisfying

re(x)dx=l, Osepnse(x)Sen, for x€[0,1] (2.15)
0

e € ¢ is called an admissible e-function.
We' note that (2.14), (2.15) correspond to the non-dimensional forms of (2.4)+2.7).

Furthermore, the inequalities duin < 1 < dmex AN €mia < 1 < emex should be satisfied to guarantee
feasibility.

Definition. M denotes the class of twice continuously differentiable functions M(-) on [0, 1]
satisfying (2.13). M € A is called an admissible M-function.
We now state the objectives of the paper in the form of extremal eigenvalue problems.

Problem 1. Determine the optimal shape a € of for given ¢, g, p such that the lowest eigenvalue
A of (2.12), (2.13) is as large as possible.

Problem II. Determine the optimal distributions of the shape a € & and the non-homogeneity
e € ¢ for given g, p such that the lowest eigenvalue A of (2.12), (2.13) is as large as possibie.

We note that the problem of finding the optimal e-function, e € ¢, for a given shape a, is
equivalent to Problem I with n = 1.

3. OPTIMALITY CONDITIONS

We derive the optimality conditions for Problems I and II by making use of a theorem of
Hestenes[23). Consider the problem of minimizing

Jou) = fo l F{t, u(t)) dt 3.1
on u € P¥ satisfying the constraints
1
Io F(tu()dt=D (i=12,....1), ysusu, (3.2)

where uy, u, D, are fixed constants and F;, i =0, 1,...,/, are given continuous functions on
[0, 11 [u,, u,].

Noting that the inequality constraiats in (3.2) define an admissible class R, in the sense of
Hestenes (p. 203{23]), we have (Th. 5.1, p. 215[23]) the following theorem.

Theorem 3.1. Suppose that uy € $%, satisfying (3.2), minimizes J,. Then there exist multipliers
70 =0, m,. .., m, not all zero, such that

! !
2, Fi(t, w) = 2 it uot)), O<t<1 (33)



Optimal shape and non-homogeneity of a non-uniformly compressed column 939

holds for all admissible elements (t, u). Conversely, if there exist multipliers 7o>0,m,...,m
such that (3.3) holds, then 4, minimizes J, in the class of admissible functions u satisfying (3.2).

Problems I and II are in a form to which Theorem 3.1 cannot be directly applied. Thus we
next derive a sufficient condition for a function a, € o to be a solution of Problem I.

Theorem 3.2. Let My € M be an eigenfunction of (2.12) for a given e with some a = a, € &,

corresponding to the lowest eigenvalue A(ap) of the probiem. Then a, is a solution of Problem I
if

t 2 1 2

M 4 < ] L (3.4)
o €ag o €a

for every a € A.

Proof. The Rayleigh quotient associated with (2.12), (2.13) is

fo ‘ (g(x)+p)'M?dx

R(a, M) = vz 2 acd, MEAM (3.5)
BM¥0) + —dx
o €a
From Raleigh’s principle[10], it follows that
Ala) = Elél}( R(a, M) = R(a, My) < R(ao, Mo) = A(ay). (3.6)

The inequality in (3.6) follows from (3.4). Relation (3.6) shows that a, € o is a solution of
Probiem 1. We note that in obtaining (3.5), we provisionally assume M'(1)M(I1Xg(1)+p)'=0
for p = 0. This is justified in Section 4.

Theorem 3.2 permits us to construct a solution a, € o satisfying (3.4). Once this has been
done, we can check that this solution is optimal by using the sufficiency part of Theorem 3.1.
We first reformulate Problem I in the light of Theorem 3.2.

Problem la. Determine a, € o, My € M such that

i Moz Il Moz

220 4y = | M0 3.

aesdt oea"dx oeao"dx’ @1

where M, € A is an eigenfunction corresponding to the lowest eigenvalue of (2.12) with a = a,.
Although M, is an unknown function in (3.7), this causes no difficulty when applying

Theorem 3.1 and it is determined together with a = a,.

Theorem 3.3. The maximum of R(a, My), defined in (3.5), is attained at a = g, € o if there exist
constants 7y >0, n such that

2

min F(a, Mo =min [ 2022+ na | = Flas, M. (3.8
aesd aed ea

where M, is as defined in Problem la.

Proof. In (3.1), F(t, @) = My*/ea” in view of the formulation of Problem I given in Problem la.
Clearly Fi(t, a) = a since a € . Application of the sufficiency part of Theorem 3.1 with F, and
F, yields the conclusion (3.8).

We next derive the optimality condition for Problem I.

Theorem 3.4. The function ao€ & which maximizes the lowest eigenvalue of (2.12), (2.13)

SS Vol. 13, No. 12—C
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satisfies
Gemin if Mozl(n+l)<a ( )Il(n+l)
o= (Mozlen)l/(nﬂ) if a (e")l/(n+l)<M2/(n+l)<a (e.n)l/(nﬂ) (3.9
Bmax if  Mo2/(n+1) 2 apax(en)’™*"

where 7 is a positive constant and My € 4 is a solution of (2.12) with a = a,.

Proof. The optimal solution a, is constructed by so defining it that (3.8) is satisfied for each
x €]0, 1]. The function F(a, My), defined in (3.8), is convex in a for every x €0, 1]. Therefore
F(a, Mp) will be minimized at a = a, € o if

o = Gumin when 9 (ayi) =0
da
2\ 1/ {m+1)
ao.—.(ﬂﬂ"_) when M<o and iﬂ‘.‘lﬁl;.o (3.10)
en oa da
Ao = Gax when -FL;ZQ <0

where dF(a.s)/9a = dFlda evaluated at a = a,u,. The expression for a, in the second line of
(3.10) follows from the condition that IF3a = 0 if Guia < G0 < dmex- By inserting (3.8) into (3.10)
and setting no = 1/n, we deduce (3.9). It can be seen that 7 is positive by noting that the results
are untenable when a negative 7 is inserted in (3.9). In fact, from (2.14) and (3.9) it follows that
0<n< max (Mylle).

The relation (3.9), was derived by various methods {5, 14, 18] for the unconstrained optimal
columns. The physical interpretation of this condition was first given by Masur{24].

We note that the bending stress o of a thin-walled columm is proportional to Mai~' when
n =3{22). Hence oaMa by (2.9). From (3.9), it follows that

oae'? for Qmin << dmax @3.11)

In the case of a homogeneous column (e = 1), we have o = constant for the optimal column.
This result was conjectured by Feigen[22] in 1952 for thin-walled columns with no minimum or
maximum thickness constraint imposed on them. This conjecture was proved rigorously for
columns carrying an axial point load by Tadjbakhsh and Keller(5] in 1962.

We now describe the procedure for applying (3.9) in computing the optimal solution a, € o
of Problem L. In the next section we give a computational technique for obtaining numerical results
based on this solution procedure.

We shall trace the optimal path starting from the point x = 1, the free end of the column, and
moving backwards to x = 0, the elastically clamped end of the column.

Since M(1)=0, it follows that in a left neighbourhood of the end point x =1, i.e. for
X E(x;, 1] where x; is an unknown constant, we have MpY*" < g u(en)"™*" for amq>0.
From (3.9) it follows that ay(x) = a., for x € [x,, 1]. By inserting this value of a, into (2.12), we
obtain

M; ) M,
(q(x)+p +AZE =0, x<x<l, G.12)

ao(X) = @, cannot be a solution of the problem owing to the assumption d., <1 and (2.14).
Therefore there exists a greatest x, in (0, 1) such that My”*"(x)) = aa(en)""*". Since
Gmin < Gmax and My is a continuous function, we have gna(en)"™*" < M+ < g, (en)/**Y
for some non-zero interval [x,, x,] where 0= x, < x, is an unknown constant. Hence we have

2A(n+1)
ay = {en {en) 7D Xy <x<x. (3.13)
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Inserting (3.13) into (2.12), we obtain

M, YA
(q(x)ﬂ,p)'ﬂn""""—mmr-=0, X=x<x. (3.14)

After this point, two cases have to be distinguished with regard to the number N of intervals,
where dp= Gmin, Qo= Gmax OT Gmin < G0 < dmay, depending on whether e(x) is a non-decreasing
function or merely some piecewise analytic function. When e(x) is non-decreasing the case is
less complicated and this we shall treat first.

Let e(x) be a non-decreasing function. Since eigenfunctions are unigue only up to a scalar
multiple, we may assume that M, has been scaled, so that

My0)=1. (3.15)

Thus My(x) is a decreasing function on [0, 1], since it satisfies the Sturm-Liouville system
(2.12), (2.13) and (3.15)[25). If a,., is sufficiently large, we shall have My®**V < g (en)" "+
for all 0 =<x =<x,. This amounts to the assumption that the optimal column nowhere achieves
the maximum allowable thickness a.,., and consequently N =2. In this case, the solution
M, € M of (3.12) and (3.14) yields the optimal shape when substituted into (3.9). Otherwise, we
have one additional interval [0, x;] where gy = @, so that N =3, Since M, is 2 monotonic
function and e(x) is non-decreasing, ao(x) is 2 non-increasing function due to (3.9). Con-
sequently the possibility of any more intervals is excluded. We first solve the problem for N =2
with x; =0 and check whether ay(0) < g, is violated. If ao(0) > amax, a new interval [0, x,] is
added, where M, is computed from (3.12) with a., replaced by ..

When e(x) is an arbitrary piecewise analytic function, the optimal shape function ay(x) will
in general have various intervals where ay = g OF @y = dmax, the intervals being connected by
appropriate arcs. The first two intervals will be those described by (3.12)<(3.14), and in the
subsequent intervals (3.12) with g, = @y, OT aua OF (3.14) will again apply. It is not possible to
determine the exact number N of intervals a prioni, since N depends on the unknown constant
n which, in turn, depends on @uin, Gmas, B, 9(x), p and e(x). For this reason, the solution
procedure is basically a trial-and-error technique.

We solve the problem by first assuming N =2 and increasing N by one whenever the
relevant inequalities in (3.9) are not satisfied. ThUS Guin < G € mex 85 Well as MV 8 g, (or
Gmax) * (€7)**Y should be checked for every N. In this way, the solution proceeds toward the
point x =0 and will reach it after a finite number of trials.

At the junction points we have the continuity relations

ao1(x;) = Aor(x;)

(3.16)
Mo (x;) = Mor(x;), Mor(x)) = Mor(x), i=12,...,N-1
where the subscripts L and R denote the quantities to the left and right of x; respectively.
Equations (2.13), (2.14), (3.15), (3.16) provide 3N + 1 equations for the unknown constants. As
unknowns we have 2N integration constants, N ~ 1 interval lengths x;, a Lagrange multiplier »
and the eigenvalue A, i.e. 3N + | unknowns in all. Thus the formulation poses a well-determined
problem for the optimal column.
We next derive the optimality condition for Problem II. Now e € £ and a € of are design
variables. Theorem 3.2 with obvious modifications applies to this case and permits us to
reformulate Problem 1I as follows.

Problem Ila. Determine a, € o, e, € £, My € 4 such that

. flMozdx_[‘ 2dx’ 31
vea)o ea" T )y ear 317

[{=13

and M, € A is an eigenfunction corresponding to the lowest eigenvalue of (2.12) with a = aq,
e = e;. Here a,, ¢, correspond to the optimal solutions for Problem II.
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We denote the Rayleigh quotient associated with Problem II by R(a, e, M), which is given in
(3.5).

Theorem 3.5. The maximum of R(a, ¢, My), defined in (3.5), is attained at a = gy E A, ¢ = ¢y € ¢,
if there exist constants ny >0, 1, 1, such that

in [ no Mo ]_ M,
?g; ["Io ea" tma+me|=n s’ + made+ Meép (3.18)
where M, is as defined in Problem Ila.

Proof. Except for minor modifications, the proof is the same as that of Theorem 3.3.
The optimality condition for Problem II is given in the next theorem.

Theorem 3.6. The functions a, € oA, ¢ € ¢ which maximize the lowest eigenvalue of (2.12),
(2.13) satisfy

Apmin if Mozl(nz) < amn(mz/‘nz) 1Hn+2)
dq= 4§ (mMHn)!+? i Gial1?12) 0D € Mo?®*? < Gan(1ymp) D
Gmax if MZ/(M—Z) > am(.mZ/m)ll(u-Z)
(3.19)
€min if Mp¥»d g emh(nznﬂ/,mn)ll(u-rn
&= (":"lema+l)ll(n+2) if € em(muﬂl,mn)ll(nn) < Mo?J(u+2) < em(ﬂzn“/nln)”("+2)
€max if Mozl(u-Z) < emnx("lz“' / ,mu)ll(n+2)

wheren,;, 1. are positive constants and M € 4 is a solution of (2.12) with a = ao, ¢ = €.

Proof. Except for minor modifications, the proof is the same as that of Theorem 3.4.

The optimal distribution of the shape and the non-homogeneity can be determined by tracing
the column starting from x = 1 and moving backwards towards x =0. In this case optimal a-
and e-functions are decreasing and consequently N = 3. The essential character of the analysis
is the same as that of Problem [ given in the previous paragraphs.

4. NUMERICAL RESULTS AND DISCUSSION
For solving Problem I numerically, the optimality condition (3.9) suggests an iterative
computational technique similar to that given in [21]. For this purpose, we need to study the
behaviour of solutions near x = 1. As a consequence of (2.8), g(x)~0{(1 - x)"}, m >0 near
x = 1. We shall seek M, near x = 1 in the form

Myx)=b(1-x)+---, ¢>0 4.0

where b and ¢ are constants to be determined and ¢ >0 is implied by (2.13). Inserting (4.1) into
(3.12) and (3.14) and equating the coefficient of the leading term to zero, we find

c=1 for p>0, ¢c=1+m for p=0. 4.2)

The assumption made in obtaining (3.5) viz that M'M(q(x)+p)' vanishes at x = 1, can now be

verified. From (4.1), we compute M'M(q(x)+p)~' = b*c(1 - x)*7'[(1-x)™ +p]+-- - which
vanishes at x = | for both p >0 and p =0 owing to (4.2).

The behaviour of M(x) near x = 1 leads us to define a bounded function f(x) by the relation

f(x)= MxXq(x)+p)"', f0)=-2AB (4.3)
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where the initial condition on f(x) follows from (2.13) and (3.15). From (2.14) and (3.9), we
deduce

n= [(L Mozl(n+l>e-n/(n+r>dx) . (1—ami“ dx_amxfs dX)-l]HIEH(Mo) “s)

" Slnln A

where S,, Smin and Sn.x denote the subintervals over which a, satisfies anin < dp < Gmax,
0= Qpmip OF Qg = ppay, respectively Clearly S, U Smin U Smex = [0, 1]. In particular, when e(x) is a
non-decreasing function, S, = [xs, X;], Smin = [X1, 1] and Spax = [0, x}. Furthermore, (3.5), (3.6),
(3.15), (4.3) yieid

jl(q+p)fdx (M, f,m) 4.5)
Mo dx ](Mf)lln-ﬂ = 0, Js M) -

A=
B+ dx

Smax ea max Smm

Formally integrating (3.12), (3.14) and using (4.3), we obtain

Ak f Mo 4x Ao = (Mo, A2) if x€ S
M(l-n)l(n+l)
f(x)= ] — Amrined f M e dx~AB= I My o) i xES, 46)
— A3 ] M°dx = AB = (Mo, M) i x€ Som

An iterative scheme is defined as follows.
(i) Choose x €{0, 1], f@(x) and 0 arbitrarily.
(i) Mo™(x)= - f; (q()+ p)f™(t) de. 4.7
(ili) Normalize M,)(x) so that (3.15) is satisfied.
(iv) Let a9x) =[M"(x)/nPe(x)]"**" and determine Spn={x|d(X) < Grin}, Spux=
{x|8(x) 2 Gpmax} and S, =0, 1] = (Spuin U Smax)-
(V) .n(i+l) = H( Aloml
(Vl) A“H) = I(Mom, f(l), 7’“’)-

(Vﬁ) f“”"(x) = Jk(Mom, A“’"", 1T(H-l)), k= 1’ 2 or 3.

(viii) If f(x) and A are non-stationary, go to (ii), eise terminate.

The computational procedure was performed by introducing j+ 1 equally spaced points in
the interval 0<x <1 and defining the iterates M, at these points. The sequence of iterates
converged rapidly and the numerical stability of the solutions was checked by computations
based on different numbers of divisions of the interval.

We examine the effect of non-homogeneity on the optimal design by considering e-functions
given by

efx)=1.0 (homogeneous column)
efx)=12x+04
e(x)=-12x+16

which are characterized by the condition f¢ e(x) dx = 1. Most of the numerical results are given
for the loading go(x) = 1, so that g(x) =1 - x. This case cortesponds to a uniformly distributed
compressive load of magnitude 1 along the column. In the rest of the paper, the maximum
eigenvalue of the fundamental buckling mode is denoted by A, in Problem I and by A, in
Problem II.

Figure 2 shows the ratio of maximum buckling load A, to the buckling load A.. of a uniform
column with the same volume and Young’s modulus e, plotted against a,;, with p=8=0.
Figure 3 gives the values of A, plotted against @, Both figures are presented for ¢, i =0, 1,2
and n = 1,2, 3 under the load g, = 1. With reference to these figures, the following observations
can be made.
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¢ = | (HOMOGENEOUS
~~ COLUMN)

~
Ss. ———e=12x+04
26 AN ———gx~[.2x+|6

Fig. 2. Curves of AJ/A,, plotted vs dns for 2 =1, 2, 3 and various functions e(x) with go=1,p =8 =0.

200r ——— ¢ u| (HOMOGENEOUS
e 23 COLUMNN)
""""" - -=~-e512x+0.4
.3 -~ T e=={2x+16

160
Ao

120

8.0

4.0

9min
Fig. 3. Curves of A, plotted-vs a,,, for £ =1, 2, 3 and various functions e(x) with gg=1,p =8 =0.

(1) An increasing function e(x) of x, e.g. ¢ = ¢,(x), yields a higher A, = A /A, in comparison
with a decreasing function e(x) of x, e.g. e = exXx) (Fig. 2). But the value of A, is higher for
¢ = e)(x) than for ¢ = ¢;(x) (Fig. 3). Hence the efficiency of the optimal design is higher for
increasing e-functions whereas the buckling load is higher for decreasing e-functions.

(2) The flatness of the curves in the vicinity of d.., =0 implies that a relatively small
thickness constraint does not appreciably reduce the optimal buckling loads compared with
their unconstrained values.

(3) For higher values of n, the efficiency of the design increases.

Fig. 4 shows the optimal shape functions aq(x) for n=1, 3 and e=¢, ¢; with gy =1,
P = B =0. We observe the following.

(1) The optimal shapes have a reverse taper at the clamped end for e = ex(x).

(2) From (3.9) and (4.2) we compute that a(x)a(l—x)“"*? near x =1, since m =1 for
go= 1. Thus a(x)a(1 - x)? for n =1 and a(x)a(1 - x) for n = 3. This explains the behaviour of
the optimal shape near x = | in Fig. 4(a).

(3) The comstraint a., =0.2 in Fig. 4b) becomes effective at different lengths for each
shape. This observation is again related to the above-mentioned behaviour of a(x) near x = 1.
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Fig. 4. Unconstrained and constrained optimal shapes with go=1, p = 8=0.

Figure 5 shows the effect of B on AJA.. for the loadings g, =1 and g¢(x) = 2(1 - x) with
n =2, p =0. We observe that the ratio AJA,, decreases rapidly with increasing 8 but tapers off
afterwards. This behaviour is more pronounced for go(x) = 2(1 - x) than for go=1. We have
Aa/Ape =1 as Boco,

Figure 6 gives the curves of AJA, plotted vs p for e, e, and e, with n=2,3, 8=0, A,
denoting the buckling load on a homogeneous uniform column. When the axial load p is infinite
compared with the distributed load go(x), AJA., converges to well-defined limits. For the
homogeneous columns (e = 1) these limits are known[10, 5]. In this case, AJA, - 1.22, 1.33 and
141 as p—sofor n =1, 2 and 3 respectively. The case n =2 can be found in [S};; n=1,2 and 3
in [10].

34r
\
\
\\
Lo\ — g% ).0
28 \\ ——-0tl2x+0.4
\ ———— (. 2%41.6

“00 ot 0.2 03 04

Fig. 5. Curves of AJ/A,, plotted vs 8 for n =2, p =0. dpin =0, go=1 and go=2(1 - x).
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Figure 7 shows the optimal shapes a(x) for various e, 8 and p for n =2, gy = 1. Although
the effects of 8 and p on the buckling load are similar as judged from Figs. 5 and 6, their effect
on the optimal design differs: optimal shape tends to become more non-uniform (a(0) increas-
ing) with increasing 8, but more uniform (a(0) decreasing) with increasing p.

Figure 8 gives a comparative view of optimal designs at different loadings for e=1, n =2,
B =p =0. The curves show A, for go(x) =2(1 — x), 0.57 sin =x, 1 and 2x plotted vs @y, in the
interval 0 < a,., < |, where the end-point values correspond to an unconstrained and uniform
column respectively. We observe that as the distributed load becomes more concentrated
toward the clamped end of the column, i.e. go(x) =2(1 - x), the buckling load of the optimal

To solve Problem II numerically, we employ a double iteration scheme which makes use of
the computational procedure already formuiated for Problem I in the previous paragrephs.
Thereby, we avoid developing a new procedure based on (3.19). '

We observe that for the unconstrained version of Problem II, ie. @min = €mn=0 and
Omax = Emax = @, the relation

e(x)=ax), 0=sxsl|
follows from (2.14), (2.15) and (3.19). Thus by simply replacing n by n+1 in the iterative

scheme for Problem I, we can solve this case numerically. Let ¢y = e, for x € [x3, 1], €5 = €pax
for x€[0, x] where 0 <x,<x;<1. Since ¢ is a decreasing function and N <3, this case

Bl

B*04,pr0, g =42
B=0 ,p=0, Aq =5
B20,p20, \q =170
LB20,p=0.4,1425.3

Q6 . e =1
———g 5=|.2x+1.6

1 L

a0 L i
0.0 02 04 06 08 10
x

Fig. 7. Optimal shapes a(x) for various values of B, p and e(x) with n =2, gy =1.
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Fig. 8. Curves of A, plotted vs a,,, for various leadings with e= 1, n =2, B=p =0.

100,

corresponds to the general one. From (2.15) and (3.19), we obtain
X 12
m=[ [ Ml (1~ s2tmus ~ (1~ 59| KMo, a0 48)

The iteration scheme for Problem II takes the following form.

(i) Choose 2, and e, as the solutions in the unconstrained case computed for Probiem I,
with n replaced by n + 1.

{ii) In the constrained case let

e =tmn i &S lmin, = lpax I &7 s

e =¢® otherwise
(iii) Go to (4.7) with e(x) = &,"(x) and impose thickness constraints on a, if are any.
(V) 1P = K(Me®, ag™. there .
v) Let &9 = M{(5,"a,"")"" and define

Cnin if &V loin, x€[x;, 1]
=1 2" if eun<EP<emy, XE[X4X3]
Cmax If &V ep,, xE€[0,x,.

We note that this step also determines x; and x,.

(vi) Go to (4.7) with e(x) = e,"**"(x).

(vii) Return to (4.9) if ¢,“*"(x) and A%}" are non-stationary, eise terminate.

The procedures starting at (4.7) and (4:9) constitute the double iteration scheme.

Figure 9 shows the curves of A.J/A, plotted vs eq, for n=1,2,3 with g =0, §=p =0,
go=1. The values of A, correspond to a homogeneous column (e=1). We see that the
efficiency of a design can be considerably increased by optimally designing the distribution of
non-homogeneity in addition to the distribution of thickness.

Figure 10 gives the optimal distributions of shape and non-homogeneity in the unconstrained
and constrained cases for n =2, 8 = p =0. We observe that imposing lower bounds on ¢ and
ao increases ao{0) and e)(0), respectively.

The results of the paper can be stated in the form of isoperimetric inequalities. For Problem
I, we make use of the values of k, given in Section 2, (2.10), (2.14), (3.5), (3.9), (3.15) to obtain

ro<gzmn ([ 400 ax) ([ B0 ax) ([ ev0ax)"rem @10
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Fig. 10. Optimal distribution of a and e for unconstrained and constrained cases with n =2, 8 =p =0.

where
1
L (g+p)'Mi*dx

R(n) = e
B + (fo' (MZ/C) Hn+1) dx) '

“.11)

with M, denoting the solution of (2.12), (2.13), (3.15) for a =a, Here C, is a constant
depending on n and the geometry of the cross section. From the values of k, given in Section 2,
we obtain C,=H? C,=k C;=1/12B? for rectangular cross sections and C, = D*8, C; =
1/87%t* for thin-walled cylinders. R(n) is, in fact, equal to A, When @mi; = 0, Gmax = ®. R(n) can
be obtained from Figs. 3, 6 and 8 for various values of the parameters n and p and the
functions g(x) and e(x) with 8 = 0. The case B > 0 requires another figure similar to Fig. 5 but
with ordinate A, instead of A,/A,.. In the special case n = 1, M, can be evaluated explicitly and
R(1) is given by

_ ay + Baz —[(a1 — Bar) +4Pas]'?
R(y== ; 23(0:‘12 - a3®) ; @.12)

where

al=]ol (q+p)(j;, élﬂdf)zdx» a2=j;l(q+P)dx, a3=J;l (q+p)(fox éllzdf)dx.
(4.13)



Optimal shape and non-homogeneity of a non-uniformly compressed column 949

We note that aya; — a3’ >0, owing to Holder s inequality and the special form of ), a; and a3
in (4.13). In the special case 8 =0 we have R(1)=a,™".

For Problem II, the isoperimetric inequality is again given by (4.10) with R(n) replaced by

R(n+1) and e set equal to 1 in (4.11).
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paper.
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