
I." J. SoIib SInfd.... Vol. IS. pp. 93S-949
Perpmoo Pm, LId.• 19'79 Priftled ill Gmt BritIIin

OPTIMAL SHAPE AND NON-HOMOGENEITY OF A
NON-UNIFORMLY COMPRESSED COLUMNt

SARP ADAU

National Research Institute for Mathematical Sciences. CSIR, P.O. Box 395. Pretoria. Republic of South
Africa

(Received 18 May 1978; in Ttvised form 2 Febrllary 1979)

AIJItnct-The best possible distribution of Young's modulus and/or the cross-sectional area is found for a
column which. for a liven volume and length. carries the maximum possible axial loads which are
non-uniformly distributed along its lenath and concentrated at the end.points. The column is elastically
clamped at one end and free at the other, where the concentrated axial load is applied. The design variables
are subject to upper and lower bounds. Sufticient optimality conditions are derived for a liven function to
be a solution of the optimization problem. The procedure to determine the optimal solutions is described.
Numerical results are obtained by employing an iterative computational technique.

I. INTRODUCTION

We consider the problem of maximizing the total axial load which is non-uniformly dis­
tributed along the length and concentrated at the end of a column of a given volume. This
maximization can be achieved by optimally designing the distribution of the non-homogeneity
and/or the cross-sectional area. We first solve the problem of optimizing a non-homogeneous
column with respect to its shape and then the problem of optimizing a column with respect to
its shape and Young's modulus with inequality constraints imposed on both the design
variables. In the first problem we have minimum and maximum thickness constnints, while in
addition to these, we have in the second problem upper and lower bounds on the Young's
modulus. The column is elastically clamped at one end and free at the other, where an axial
load is acting. We assume that the instability occurs at the fundamental mode of buckling.
Solutions are found for columns with a variety of cross-sectional geometries.

In mathematical terms, the optimal design problems under investigation are equivalent to the
problem of maximizina the lowest eigenvalue of a linear second-order ordinary difterential
equation with variable coefficients known as isoperimetric problems in the calculus of
variations[I}. Certain coefficient functions (design variables) in the difterential equation are to
be varied subject to some integral conditions. In the last section we formulate our results in the
form of an isoperimetric inequality which gives an upper bound on the lowest eigenvalue of the
differential equation.

The present investigation differs from previous studies on optimal columns basically in
considering a general form of loading, allowing for the longitudinal non-homogeneity of the
material, and finally optimizing the column with respect to both shape and non-homogeneity.

With the exception of [2, 3], where the weight of the column is taken into account, only
concentrated loads acting at the ends were examined in previous papers on the optimal design
of conservatively loaded columns[4-t8]. Furthermore, the non-homogeneity of the columns has
been given attention only in [8, 9]. In [8], the numerical results are given only for homogeneous
cases and in [9] the optimal distribution of non-homogeneity and shape is computed by first
assuming the deflection curve in a special case. On the other hand, the optimal Young's
modulus of structural elements of constant cross-sectional area has been determined in a few
cases. Klosowicz and Lurie[19] determined the optimal non-homogeneity of a torsional bar and
Rammerstorfer[2O] that of a vibrating beam. In [20] no lower bound is imposed on the Young's
modulus, and consequently there are points where this becomes zero. The same situation has
been observed in the treatment of shape optimization problems without any thickness
constraints[2, 4, 5, 7-9,11-14]. As this is clearly undesirable from a practical point of view,
either a minimum thickness or a maximum stress constraint has been imposed in some
formulations in order to avoid this situation[3, 6,10,15-18]. In our case, the design variables,
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the Young's modulus and/or the cross-sectional area, are subject to upper and lower
Dds. Optimal columns with elastic clamping have been considered in [8, 12].
n Section 2 we derive the basic equations of the problem. Optimality conditions are
ined in Section 3 by a method suggested by Barnes[16, 17] and a qualitative analysis of the
nal forms is given.
'0 obtain the numerical results in Section 4, we employ an iterative computational scheme
ar to that used by Niordson[21]. In this section the relations between the critical buckling
and the volume, the length, the cross-sectional geometry and the non-homogeneity of the
nn are established by an isoperimetric inequality.

2. FORMULATION OF THE PROBLEM

'e consider an untwisted coJuma of lenatb L, volume V and cross-sectionaJ area A(X)
! X is the coordiaate alooa the unbuckled state of the coIuma (F'II- 1). The column is
:ally clamped at X =0 and carries a non-uniformly distributed axial load 0 IIIiii AoQ(X) < 00

lit length aJona it. There may be an axial cOmpRssive load Ao1' at the free end (X =L).
II Aothe load factor. The column is made of an isotropic, linearfy elastic material which
ongitudinal non-homogeneity described by Young's modulus E(X). Denoting by I(X) the
It of inertia of the cross section about an axis through the centroid of the column
dicuIar to the plane of bendinl, and by Y(X) the de8ection function, the equation of
rium is

[ElY"]" +Aof(!; Q(t) dt +p) Y'J =0
to the boundary conditions

Y=o, Y'=fJoE/Y" at X=O,

ElY" = 0, (ElY")' +Ao1'Y' =0 at X = L

(2.1)

(2.2)

(2.3)

'prime denotes dUferentiation with respect to X, and IJo characterizes the rotational
t of the support with IJo =0 for a riPUY clamped column, f3 =00 for an ideal hinae. We
!sider the optimal desip problem of maxiJniziDI the load factor Ao by (0 deterrninillg
t.seetionaI area distnbution A(X), for a priori specified functions E(X), Q(X) and P,
S) the volume and thickness constraints

LL A(X)dX= V

O:l5t Amin E; A(X) E; AIIIU for 0 E; X E; L

(2.4)

(2.5)

W, Alliin, Anu are given constants; (ii) determinina both A(X) and the distribution of

x

Fig. I. Fundamental mode of buckling.
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non-homogeneity E(X), for a priori specified Q(X) and P, subject to (2.4), (2.5) and

LL E(X)dX=5

O:!E,;Ernin :!E,;E(X)~Emu for O:!E,;X:!E,; L

937

(2.6)

(2.7)

where 5, Ernin, Emax are given constants, such that (2.IH2.3) will have a non-trivial solution
Y(X) with no intemal nodes.

The condition on internal nodes is imposed to ensure that Y(X) is the lowest mode of
buckling. Clearly V and 5 should satisfy LAmin < V < LAmax and LErnin < 5 < LEmax to
guarantee feasibility.

We introduce the following dimensionless quantities:

X Y(xL) L L
x = L' y(x) =-L-' e(x) =SE(xL), a(x) =V A(xL),

i(x) =l~t) , p =P/ LL Q(X) dX, qrt.x) =LQ(xL)/ LL Q(X) dX, (2.8)

q(x) =f qrt.D d~.

We assume that there exists a relation between i(x) and a(x), expressible in the form

;(x) = k"a"(X) (2.9)

where Ie" is a dimensionless constant depending on PI and the cross-sectional JClODletJ'y, and
PI =1, 2 or 3. For sandwich columns of rectangular cross section with fixed width and variable
face-sheet thickness, PI = I and k. = H2/L2

, where 2H =fixed core thickness. Solid columns
with pometric:aIly similar cross-sections have PI =2 and k2 II: EVlL3

, where Edepends on the
crosscctioaal sbape. For solid columns of reetanpIar cross section of fixed width and
variable depth, PI'"' 3 and k3 II: V2/12B2L4

, where B ... width. We refer to (IO) for further details.
In the case of thin-walled circular columns of similar cross sections, PI ... I, "I =1)2/8V if the
design variable is the wall thickness(3), and PI II: 3, k3 = V2/8rL4t 2 if the design variable is the
diameter; where D =cross-sectional diameter and t ... wall thiclmess(22). We define

_ L2Ao (L _ f¥VIc,.
A- 5Vk" Jo Q(X)dX, (J - L .

Substituting (2.8), (2.9) and (2.10) into (2.1), we have

[ea"yj" + A[(q(x) +p)yT =o.

(2.10)

(2.11)

We expect the optimal a(x) and e(x) functions to be continuous but not continuously
differentiable in view of the inequality constraints (2.5) and (2.7). Therefore, by setting
M = ea"y", the difterential eqn (2.11) is transformed into a form which does not involve the
derivatives of a(x) and t(x). Various advantages of a formulation in terms of the bending
moment M have already been noted by Masur[l8). After some transformations and using the
boundary condition (ta"y")' +Apy' ... 0 at x ... I, we obtain

subject to

( M' )'+A1[=O
q(x)+p ta"

M'(O) +A{J(1 + p)M(O) =0, M(1) =O.

(2.12)

(2.13)
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Let ~ denote the class of functions f(·) that are piecewise continuously differentiable in
the sense that they are continuous everywhere on [0, 1) and continuously differentiable there,
with the possible exception of at most a finite number of points where the derivative of f(·)
shall have well-defined limiting values both from the left and the right.

Definition. JtJ denotes the class of functions a E~ satisfying

f a(x) dx = t, O:eo amin :eoa(x) :eo amax for x E [0, t].

a E JtJ is called an admissible a-function.

Definition. ~ denotes the class of functions e E H satisfying

(2.14)

(2.15)f e(x) dx =t, O:eo emin:eo e(x):eo emax for x E [0, 1).

eE f is called an admissible e-function.
We' note that (2.14), (2.15) correspond to the non-dimensionai forms of (204H2.1).

Furthermore, the inequalities llmin < 1<a_ and e,. < t < elMJt should be satisfied to guarantee
feasibility.

Definition. .it denota the cIus of twice COBtinuously dihentiabIe funccions M(o) on (0, J]
satisfying (2.13). ME.it is called an admissible M-function.

We now state the objectives of the paper in the form of extremal eigenvalue problems.

Problem L Determine the optimI shipe a est for pwn e. q, p such that the lowest eiaenvalue
A of (2.12), (2.13) is as Iaqe as possible.

Problem n. Determine the optimal distributions of thes. a e st and the non-bcNnoIeneity
eE ~ for given q, p such that dle Iowsl ....vllue A of (2.12), (2.13) is as Iarp as possible.

We note that the PfOI*m of fintIiRa the opIRaI e-function, eE~, for a given shape a, is
equivalent to Problem I with n ... I.

3. OPTIMALITY CONDITIONS

We derive the optimality conditions for Problems I and II by making use of a theorem of
Hestenes[23]. Consider the probiem of minimi.zing

JrI..") =L' Fr/..t, "(t» dt

on u E~ satisfying the constraints

L' R(t, u(t» dt =D, (i =t, 2, ... , I), Ul:eo u :eo "2

(3.1)

(3.2)

where U" U2, D, are fixed c:oRItants and R, i'" 0, I, ... , I. are liven continuous functions on
[0, 1] x{u" u21.

Noting that the inequality constraiaas in (3.2) define an admissible c::1ass Ro in the sense of
Hestenes (p. 203{23]), we have (Th. 5.1, p. 215[23]) the following theorem.

Theorem 3. t. Suppose that UoE~, satisfying (3.2), minimizes Jo• Then there exist multipliers
710 ~ 0,71".· .. , 71/, not all zero, such that

/ I

~ .",F;(t, u) ~~ 71,F;(t, ur!..t)), O:eo t '" 1 (3.3)
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holds for all admissible elements (t, u). Conversely, if there exist multipliers '10>0, '110···, 'II
such that (3.3) holds, then Uo minimizes Jo in the class of admissible functions u satisfying (3.2).

Problems I and 11 are in a form to which Theorem 3.1 cannot be directly applied. Thus we
next derive a sufficient condition for a function ao E sI to be a solution of Problem I.

Theorem 3.2. Let MoE.M. be an eigenfunction of (2.12) for a given e with some a = ao E sI,
corresponding to the lowest eigenvalue A(ao) of the problem. Then ao is a solution of Problem I
if

1
1M 2 11M2
_0 dx,,;;; _0 dx

o eao" 0 ea"

for every aE A.

Proof. The Rayleigh quotient associated with (2.12), (2.13) is

(3.4)

a Ed, ME.M. (3.5)

From Raleigh's principle[101, it follows that

A(a) = min R(a, M) =R(a, Mo)~ R(ao, Mo) =A(ao).
MEAt

(3.6)

The inequality in (3.6) follows from (3.4). Relation (3.6) shows that ao E sI is a solution of
Problem I. We note that in obtaining (3.5), we provisional1y assume M'(l)M(l)(q(1)+ prJ =0
for p ~ O. This is justified in Section 4.

Theorem 3.2 permits us to construct a solution ao E d satisfying (3.4). Once this has been
done, we can check that this solution is optimal by using the sufticiency part of Theorem 3.1.
We first reformulate Problem I in the light of Theorem 3.2.

Problem la. Determine ao E .st, MoE.M such that

(3.7)

where MoE.M is an eigenfunction corresponding to the lowest eiaenvalue of (2.12) with a =ao.
Although Mo is an unknown function in (3.7), this causes no difticulty when applying

Theorem 3.1 and it is determined together with a = ao.

TIteorem 3.3. The maximum of R(a, Mo), defined in (3.5), is attained at a =ao E sI if there exist
constants '10 > 0, 'I such that .

min F(a, Mo). min ['10 M~+ 'Pa] =F(ao, Mo).
aE"" aE"" etJ

where Mo is as defined in Problem la.

(3.8)

Proof. In (3.1), Fr/..t, a) =Mo2/ea" in view of the formulation of Problem lliveo in Problem lao
Clearly F,(t, a) =a since a E sI. Application of the sufticiency part of Theorem 3.1 with Fo and
F] yields the conclusion (3.8).

We next derive the optimality condition for Problem I.

Theorem 3.4. The function ao E.st which maximizes the lowest eigenvalue of (2.12), (2.13)
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where ." is a positive constant and Mo E.At is a solution of (2.12) with a =aO.

Proof. The optimal solution ao is constructed by so defining it that (3.8) is satisfied for each
x E [0, I). The function F(a, Mo), defined in (3.8), is convex in a for every x E [0, 1]. Therefore
F(a,Mo) will be minimized at a =aoEd if

ao =amid when aF(tlmiJ ~O
aa

ao= (,,~)I/("+11 when aF(a,..) <0 and aF(C!wJ>O (3.10)
aa aa

ao= a-x when aF(a,.J~O
aa

where aF(a,.)/aa =aRia evaluated at a =amino The e~pression for ao in the second line of
(lIO) folloWs from the condition that aRia == 0 if a..< ao < a... By iucrtiaI (3.8) into (3.10)
and settiq 'flo == 1/11, we deduce (19). It can be seen that ." is positive by notins that the results
are untenable when a neptive ." is inserted in (3.9). In fact, from (2.14) and (3.9) it foDows that
0<.,,< max (Mi/e).

OCzcl

The relation (3.9h was derived by various methods[.5, 14, 18] for the unconstraiDed optimal
columns. The physical iatapletaaion of this coMitioB was first liven by MIsur(24).

We note that the beIIdiaI stress iT of a tbin-waUed coIaDm is proportional to Marl when
n =3[22). Hence uaMa-2 by (2.9). From (3.9), it follows that

uae1l2 for tlmin < ao < a-x. (3.11)

In the case of a Ilornopneous column (e .1), we have iT == constant for the optimal column.
This result was conjectured by FeiIen(22) in 1952 for thin-walled coiUIIUIS with no minimwn or
maximum thickness constraint imposed on them. This conjecture was proved rigorously for
columns carryiag an axial point load by Tadjbakhsb and Keller(5) in 1962.

We now describe the procedure for applying (3.9) in computins the optimal solution ao E .sri
ofProblem I. In the DCxt seetion we pve a computational technique for obtaining numerical results
based on tIIis soWtion procedure.

We shaD trace the optimal pith starting from the point x =I, the free end of the column, and
moving backwards to x =0, the elasticaUy clamped end of the column.

Since M(l) == 0, it follows that in a left neighbourhood of the end point x =I, Le. for
xE(x.. I) where XI is an unkRown constant, we have Mo2/(II+II<amm(e.,,)II(,,+1) for amin>O.

From (3.9) it follows that ao(x) = amin for x E [Xh I). By inserting this value of ao into (2.12), we
obtain

( M;' )' A Mo - 0 ,,;: 1
()+

+ -,,-- , XI_X< •
q x P eamin

(3.12)

ao(x). amin cannot be a solution of the problem owing to the assumption amin < I and (2.14).
Therefore there exists a greatest XI in (0,1) such that M02/(,,+I)(X,) =ammCe.,,) 1/(11+1). Since
amin < a-x and A4 is a continuous function, we have amin(e.,,)l!(II+1) =e;; Mo2l(II+') < a-x(e.,,)l!(II+1J

for some non-zero interval [X2,XI) where O=e;;X2<XI is an unknown constant. Hence we have

(3.13)
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Inserting (3.13) into (2.12). we obtain
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(3.14)

After this point. two cases have to be distinguished with regard to the number N of intervals.
where ao =ami.." ao =a max or amin < ao < amax• depending on whether e(x) is a non-<lecreasing
function or merely some piecewise analytic function. When e(x) is non-decreasing the case is
less complicated and this we shall treat first.

Let e(x) be a non-<lecreasing function. Since eigenfunctions are unique only up to a scalar
multiple. we may assume that Mo has been scaled. so that

Mn(O) = 1. (3.15)

Thus Mn(x) is a decreasing function on [0.1]. since it satisfies the Sturm-Liouville system
(2.12), (2.13) and (3.15)[25]. If amax is sufficiently litrge, we shall have Mo2lln+1) < a-x(er,) JI(n+1)

for all 0 =:;; x =:;; x•. This amounts to the assumption that the optimal column nowhere achieves
the maximum allowable thickness amaX. and consequently N =2. In this case, the solution
MoE.Jl of (3.12) and (3.14) yields the optimal shape when substituted into (3.9). Otherwise. we
have one additional interval [0, X2] where ao = ama,... so that N = 3. Since Mo is a monotonic
function and e(x) is non-decreasing. an(x) is a non-increasing function due to (3.9). Con­
sequently the possibility of any more intervals is excluded. We first solve the problem for N =2
with X2 =0 and check whether an(0) =:;; amax is violated. If an(0) > amax• a new interval [0, x21 is
added, where Mo is computed from (3.12) with a..m replaced by amax•

When e(x) is an arbitrary piecewise analytic function, the optimal shape function an(x) will
in general have various intervals where ao =a...m or ao =amax, the intervals being connected by
appropriate arcs. The first two intervals will be those described by (3.12)-{3.14), and in the
subsequent intervals (3.12) with ao =amin or amax or (3.14) will apin apply. It is not possible to
determine the exact number N of intervals a priori, since N depends on the unknown constant
." which, in turn, depends on amin, amax• (3. q(x), p and e(x). For this reason, the solution
procedure is basicaDy a trial-and-eJTor technique.

We solve the problem by first assuming N =2 and increasing N by one whenever the
relevant inequalities in (3.9) are not satisfied. Thus tlmin:E;; ao" max as weD as Mo'll.n+l) S .... (or
amaJ· (er,)I/(n+I) should be checked for every N. In this way, the solution proceeds toward the
point x =0 and will reach it after a finite number of trials.

At the junction points we have the continuity relations

aoL(Xj) =aoR(Xj)

MoL(Xj) =MOR(xj), MOL(xj) =MOR(xj), i =1,2, ... , N - 1
(3.16)

where the SUbscripts L and R denote the quantities to the left and rilht of oX; respectively.
Equations (2.13), (2.14), (3.15), (3.16) provide 3N+ I equations for the UDkDown constants. As
unknowns we have 2N integration constants, N - I interval lengths x;, a Laaranae multiplier ."
and the eigenvalue A, i.e. 3N +1unknowns in all. Thus the formulation poses a weD-determined
problem for the optimal coluDm.

We next derive the optimality condition for Problem II. Now eE t and a E Ji, are design
variables. Theorem 3.2 with obvious modifications applies to this case and permits us to
reformulate Problem II as follows.

Problem IIa. Determine ao E d, eo E ~. MoE.Jl such that

(3.17)

and MoE.Jl is an eigenfunction corresponding to the lowest eigenvalue of (2.12) with a =ao.
e =eo. Here ao. eo correspond to the optimal solutions for Problem II.
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We denote the Rayleigh quotient associated with Problem II by R(a, e, M), which is given in
(3.5).

Theorem 3.5. The maximum of R(a, e, Mo), defined in (3.5), is attained at a == ao E d, e == eo E~,
if there exist constants '1'10> 0, 'I'It. '1'12 such that

(3.18)

where Me is as defined in Problem IIa.

Proof. Except for minor modifications, the proof is the same as that of Theorem 3.3.
The optimality condition for Problem II is given in the next theorem.

Theorem 3.6. The functions 00 E.!Jt, eo E ewhich maximize the lowest eiaenvalue of (2.12),
(2.13) satisfy

{

a.

00 = (:Mo2/'I'II2) 1/1,,+2)

Qn.x

{

e.

eo = (;MoZ/fr/+I)./("+Z)

lmax

if M02l1"+2) < Qmin( '1'112/fIiJ 1/111+2)

if Omin('I'I1 2/fIiJ 1/1,,+2) ~M02l1"+Z) < Qmax('1'1 Iz/fliJl/(".Z)

if Mo2l(,,·Z) .. an.x("'12/fIiJ 1/1,,+2)

(3.19)
if Me2l11l+Z)~ emin(."z,,·I/'I'II,,)I/(,,·2)

if ~ e...,( '1'12"+1/'1'11")1/("+2) ~Mo2l',,"'Z) < en.x( 'I'I2,,+I/"'I,,)I/I"+Z)

if Me2l(,,·Z) ~ lmax('I'I2"+I/.".,,)I/(,, ...2)

where.".. '1'12 are positive constants and Mo E.Ii is a solution of (2.12) with Q =00, e =eo.

Proof. Except for minor modifications, the proof is the same as that of Theorem 3.4.
The optimal distribution of the sbape and the non-bomogeneity can be detennined by tracing

the column startinl from x =I and moving backwards towards x =O. In this case optimal a­
and e-functions are decreasilll and consequently N EO 3. The essential character of the analysis
is the same as that of Problem I given in the previous paragraphs.

4. NUMER.lCAL RESULTS AND DISCUSSION

For solving Problem I numerically, the optimality condition (3.9) sugests an iterative
computational technique similar to that given in [21]. For this purpose, we need to study the
behaviour of solutions near x == I. As a consequence of (2.8), q(x)-O(I-x)"'], m >0 near
x = I. We sheil seek Me near x =I in the form

Mo(x)==b(l-x)C+"', c>O (4.1)

where b and C are constants to be determined and C >0 is implied by (2.13). Insertinl (4.1) into
(3.12) and (3.14) and equatillg the coo4icient of the leading term to zero, we find

c = I for p > 0, C = I + m for p = o. (4.2)

The assumption made in obtaining (3.5) viz that M'M(q(x) +pr l vanishes at x = I, can now be
verified. From (4.1), we compute M'M(q(X)+p)-I=bzc(I-X)2C-I[(I-X)"'+p]+'" which
vanishes at x =1 for both p > 0 and p =0 owing to (4.2).

The behaviour of M(x) near x = I leads us to define a bounded function f(x) by the relation

!(x)=M6(x)(q(x)+pr 1
, !(O)=-A{3 (4.3)
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where the initial condition on I(x) follows from (2.13) and (3.15). From (2.14) and (3.9), we
deduce

TJ =[(1 Mo2}ln+l) e-1/(n+l) dX) . (I - amin1 dx - ama•1 dxrl

]"+1 lIE H(Mo) (4.4)
SN Srrun Smll~

where S", Smin and Sma. denote the subintervals over which an satisfies amin < an < amax,
an =amin or an == amax, respectively. Clearly S" U Smin U Sma. =[0, 1). In particular, when e(x) is a
non-decreasing function, S" == [X2' XI), Smin == [x" 1) and Sma. =[0, x21. Furthermore, (3.5), (3.6),
(3.15), (4.3) yield

Formally integrating (3.12), (3.14) and using (4.3), we obtain

(4.5)

I(x) ==

if xESmin

if xES..

if x E smax.

(4.6)

An iterative scheme is defined as follows.
(i) Choose x E [0, 1), fOl(x) and 71(Ol arbitrarily.

(ii) Mo(/~x) =- J1 (q(t) +p)fll(t)dt. (4.7)
(iii) Normalize M/'(x) so that (3.15) is satisfied.
(iv) Let cJ<1l(X) == [M.,(I)2(X)/TJ(lle(X»)IIt,,+\) and determine SIIIin == {XIcJ<'l(X) E,; alliin}, Smax =

{XIcJ<'l(X) .. a,.J and S" =[0, l) - (s... U Smaxl.
(v) 71(/+ll == H(Molll).

(vi) ,\ (/+\) == [(Mo(/), f", .,,(/~.

(vii) r+ll(x) == J,,(Molll, ,\ lI+\), 71(1+1), k == 1, 2 or 3.
(viii) If I(x) and ,\ are non-stationary, go to (ii), else terminate.
The computational procedure was performed by introduciDa j + 1 equally spaced points in

the interval O.s;; x =s;; 1 and defining the iterates Mo(/) at these points. The sequence of iterates
converged rapidly and the numerical stability of the solutions was checked by computations
based on different numbers of divisions of the interval.

We examine the effect of non-homogeneity on the optimal design by considering e-functions
given by

eo(x) =1.0 (homogeneous column)

el(x) == 1.2x +0,4

eix) =-1.2x + 1.6

which are characterized by the condition JJ e(x) dx =1. Most of the numerical results are Jiven
for the loading tlIJ(x) -I, so that q(x) == 1- x. This case corresponds to a uniformly distributed
compressive load of magnitude 1 along the column. In the rest of the paper, the maximum
eigenvalue of the fundamental buckling mode is denoted by A. ·in Problem 1 and by A.c in
Problem n.

FIgUJ'e 2 shows the ratio of maximum buckling load A., to the btJCkling load Aw of a UDiform
column with the same volume and Young's modulus t, plotted apiDst a.a..with p =fJ =0.
Figure 3 gives the values of ..\" plotted apinst amino Both figures are presented for It. ; .. 0, 1, 2
and n == 1,2,3 under the load qo == 1. With reference to these figures, the followina observations
can be made.
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(1) An increasing function e(x) of oX. e.g. e =e\(x), yields a higher Ar =A,JA. in comparison
with a decreasing function e(x) of oX. e.g. e =eix) (Fig. 2). But the value of Aa is higher for
e = eix) than for e =e\(x) (Fig. 3). Hence the efficiency of the optimal design is higher for
increasing e-functions whereas the buckling load is higher for decreasing e-functions.

(2) The ftatness of the curves in the vicinity of am =0 implies that a relatively small
thickness constraint does not appreciably reduce the optimal buckling loads compared with
their unconstrained values.

(3) For hiIher values of II. the efficiency of the design increases.
Fig. 4 shows the optimal shape functions ao(x) for n =1, 3 and e =eo, e2 with qo =1,

P =fJ =O. We observe the foUowiDg.
(1) The optimaJ shapes have a reverse taper at the clamped end for e =e2(x).
(2) From (3.9) and (4.2) we compute that a(x)a(l- X)4/(n+I) near x =I, since m =1 for

tlo =1. Thus a(x)a(l- X)2 for n =1 and a(x)a(l- x) for n =3. This explains the behaviour of
the optimal shape near x = 1 in Fag. 4(a).

(3) The coastraint a..... =0.2 in Fig. 4(b) becomes effective at different lengths for each
shape. This observation is again related to the above-mentioned behaviour of a(x) near x = l.
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FJgUre S shows the effect of f3 on AJAw for the loadings qo =1 and qo(x)'" 2(1- x) with
II =2, p ... O. We observe that the ratio AJAw decIeases rapidly with increasiDa f3 but tapers off
afterwards. This behaviour is more pronounced for qo(x)'" 2(1- x) than for 110'" 1. We have
AJAw .... l as f3-..I:XJ.

FJgUre 6 gives the curves of AJ)." plotted vs p for. eo. tJ and t2 with II" 2, 3, IJ., 0, All
denoting the buckliDa load on a homogeneous uniform column. When the axial load p is iDfinite
compared with the distributed load qo(x), AJAII converges to well-defined limits. For the
hOfDOFlleOuS columns (e.1) these limits are known[10, 5]. In this case, AJ)." .... 1.22, 1.33 and
1.41 as p .... 1:XJ for II == 1, 2 and 3 respectively. The case II =2 can be found in [5]; II == I, 2 and 3
in [10].
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FJ8Ule 7 shows the optimal shapes a(x) for various e, f3 and p for n = 2, i/o = 1. Although
the effects of f3 and p on the bucldiDa load are similar as judged from Figs. 5 and 6, their effect
on the optimal desip dilers: optimal shape tends to become more non-uniform (a(O) increas­
iJII} with increasing {3. but more uniform (a(O) decreasiJll} with increasing p.

FJ8Ule 8 gives a comparative view of optimal designs at different loadings for e =1, n =2,
f3 =p =O. The curves show A/I for qf!..x) =2(1- x), 0.511' sin 1I'x, 1 and 2x plotted vs amin in the
interval 0~a.. ~ I. where the end-point values correspond to an unconstrained and uniform
column respectively. We observe that as the distriIMIted load becomes more concentrated
toward the clamped end of the column, i.e. qo(x) =2(1- x), the buckling load of the optimal
desiaD increases.

To solve Probiem II numerically, we employ a double iteration scheme which makes use of
the computatioaal procedure aJready fOl'llUlJaacd for Probiem I in the previous paraanphs.
Thereby, we avoid developing a new procedure based on (3.19). .

We observe that for the unconstrained version of Problem II, i.e. ann = emin = 0 and
a- =e... =00, the relation

e(x) =a(x), O~x ~ 1

foUows from (2.14), (2.15) and (3.19). Thus by simply replacing n by n +1 in the iterative
scheme for Problem I, we can solve this case numerically. Let eo = emin for x E (X3, 1], eo = emax

for x E (0, x.] where 0~ x. < X3 ~ 1. Since eo is a decreasing function and N ~ 3, this case

o

~ - 0.4 , po 0 , Ao - 4.1
~-0.4,p-0,Ao -4.2
~-o ,p-O, Ao -15.1

~- O,po 0, Ao 0170
~- 0.poo.4.Ao-5.3

I-:::S·-~··~C=:{$-o.p- 0.4 ,Xo 05.6
'-'-'-.
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0.0 0.2 0.4 Q6 0.8 I 0

Fig. 7. Optimal shapes a(x) for various values of fJ. p and e(x) with n '" 2. qo'" I.
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corresponds to the general one. From (2.15) and (3.19), we obtain
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(4.8)T12 =[L:3 (Mol tJolll'l) dx/(l- X.I~ - (1- X,)I.-)Tn•K(Mo, tJo).

The iteration scheme for Problem II takes the foDowiDa form.
(i) Choose CIfJ(O) and eo(O) as the solutions in the uoconstraiDed case computed for Problem I,

with n replaced by II + 1.
(n) In the constrained case let

eo(l)=em if 60(0) t!iiZ 'min, tom =e-x if eo(O);. l wax,

eo(1) =to(O) otherwise
(iii) Go to (4.7) with ,ex) == eo(1)(x) and impose thickness constraints on tJo if there are any.
(iv) .",,(1+1) =K(MP'. Qo(i». (4.9)
(v) let 1';):& ~(l)/(T12(i)tJo(l)·)IJ2and define

{

e... if I J)!llite.., xE[x3,l]
lo{i+t) = . i<0 if It'llin <,,0 < lmu. .IE [X4' X3]

l max if 1.1) ~ ' max, X E [0, .%.4].

We note that this step also determines X3 and x•.
(vi) Go to (4.7) with e(x) == eou+t>(x).
(vii) Return to (4.9) if eo(i+l)(X) and .,\~I) are non-stationary, else terminate.
The procedures starting at (4.7) and (4:9) constitute the double iteration scheme.
F'JIUfe 9 shows the curves of .,\",J.,\4 plotted VS lmin for n =1,2,3 with a... =0, fJ .. p =0,

qo =1. The values of A. COITeSpond to a hornogoeneous column (e:= 1). We see that the
efficiency of a design can be considerably increased by optimally desi1nin8 the distribution of
non-homogeneity in addition to the distribution of thickness.

Figure 10 gives the optimal distributions of shape and non-homoaeneitY in the UDCODStrained
and constrained cases for n = 2, fj =p =O. We observe that imposing lower bounds on eo and
ao increases tJo(O) and 4(0), respectively.

The results of the paper. can be stated in the form of isoperimetric inequalities. For Problem
I. we make use of the values of k,.. given in Section 2. (2.10), (2.14), (3.5), (3,9), (3.15) to obtain
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where

(4.11)

with A4 denoting the solution of (2.12), (2.13), (3.15) for Q =ao. Here Cn is a constant
depending on n and the geometry of the cross section. From the values of k" given in section 2,
we obtain C. =H2

, C2 = f. C3 =1/12B2 for rectanJUlar cross sections and C. =JJZ/8, C3 =
1/8~t2 for thin-waJJed cyliDders. R(n) is, in fact, equal to All when Qmin =0, Qmu =QQ. R(n) can
be obtained from FIp. 3, 6 and 8 for various values of the parameters n and p and the
functions q(x) and e(x) with ~ = O. The case ~ > 0 requires another figure similar to FJI. 5 but
with ordinate All instead of AJA... In the special case n = 1, A4 can be evaluated explkitly and
R(l) is given by

(4.12)

where

a, = f (q +p)(L< ell2d~Y dx, a2 = f (q+ p)dx, a3 = f (q +p)(f el/2d~) dx.

(4.13)
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We note that a,a2 - al > 0, owing to Holder s inequality and the special form of a .. a2 and a3
in (4.13). In the special case f3 =0 we have R(1) =a.-I.

For Problem II, the isoperimetric inequality is again given by (4.10) with R(n) replaced by
R(n + 1) and e set equal to 1 in (4.11).

AckllOwledgtmml-The author wishes to thank Dr. D. H. Martin for his valuable comments during the preparation of this
paper.
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